Cara Menentukan Penyelesaian SPLDV Metode Subtitusi
Kelas : VIII A
Hari/tgl : Jumat, 08 Nopember 2019
kita akan membahas tentang cara menentukan himpunan penyelesaian (HP) sistem persamaan linear dua variabel dengan menggunakan metode subtitusi. Adapun langkah-langkah untuk menyelesaikan SPLDV dengan metode subtitusi adalah sebagai berikut.
Langkah 1:
Pilihlah salah satu persamaan (jika ada pilih yang paling sederhana), kemudian nyatakan x sebagai fungsi y atau y sebagai fungsi x.
Langkah 2:
Subtitusikan nilai x atau y yang diperoleh dari langkah 1 ke persamaan yang lain.
Agar kalian lebih memahami bagaimana caranya menentukan himpunan penyelesaian SPLDV dengan menggunakan metode subtitusi, silahkan kalian pelajari beberapa contoh soal dan pembahasannya berikut ini.
Agar kalian lebih memahami bagaimana caranya menentukan himpunan penyelesaian SPLDV dengan menggunakan metode subtitusi, silahkan kalian pelajari beberapa contoh soal dan pembahasannya berikut ini.
Contoh Soal #1
Carilah himpunan penyelesaian dari tiap SPLDV berikut ini.
5x + 5y = 25
3x + 6y = 24
Jawab
5x + 5y = 25 ………. Pers. (1)
3x + 6y = 24 ………. Pers. (2)
Dari persamaan (1) kita peroleh persamaan y sebagai berikut.
⇔ 5x + 5y = 25
⇔ 5y = 25 – 5x
⇔ y = 5 – x
Lalu kita subtitusikan persamaan y ke persamaan (2) sebagai berikut.
⇔ 3x + 6(5 – x) = 24
⇔ 3x + 30 – 6x = 24
⇔ 30 – 3x = 24
⇔ 3x = 30 – 24
⇔ 3x = 6
⇔ x = 2
Terakhir, untuk menentukan nilai y, kita subtitusikan nilai x ke persamaan (1) atau persamaan (2) sebagai berikut.
⇔ 5(2) + 5y = 25
⇔ 10 + 5y = 25
⇔ 5y = 25 – 10
⇔ 5y = 15
⇔ y = 3
Jadi, himpunan penyelesaian dari SPLDV tersebut adalah {(2, 3)}.
Contoh Soal #2
Tentukan himpunan penyelesaian untuk SPLDV berikut ini dengan menggunakan metode subtitusi:
x – 2y = 8
3x + 2y = -8
Jawab
x – 2y = 8 ….………. Pers. (3)
3x + 2y = -8 ………. Pers. (4)
Dari persamaan (3) kita peroleh persamaan x sebagai berikut.
⇔ x – 2y = 8
⇔ x = 8 + 2y
Lalu kita subtitusikan persamaan x ke dalam persamaan (4) sebagai berikut.
⇔ 3(8 + 2y) + 2y = -8
⇔ 24 + 6y + 2y = -8
⇔ 24 + 8y = -8
⇔ 8y = -8 – 24
⇔ 8y = -32
⇔ y = -4
Terakhir, untuk menentukan nilai x, kita subtitusikan nilai y ke persamaan (3) atau persamaan (4) sebagai berikut.
⇔ 3x + 2(-4) = -8
⇔ 3x + (-8) = -8
⇔ 3x = -8 + 8
⇔ 3x = 0
⇔ x = 0
Jadi, himpunan penyelesaian dari SPLDV tersebut adalah {(0, -4)}.
Tidak ada komentar:
Posting Komentar