Selasa, 25 Februari 2020

Garis Singgung Persekutuan Luar Dua Lingkaran

Hari/tgl : Rabu, 26 Februari 2020
Kelas : 8A

Garis Singgung Persekutuan Luar Dua Lingkaran

Ulasan materi terkait garis singgung lingkaran yang pertama akan dibahas adalah garis singgung persekutuan luar dua lingkaran. Persamaan garis singgung lingkaran persekutuan luar melibatkan dua lingkaran dan sebuah garis singgung lingkaran. Untuk lebih jelasnya dapat dilihat pada gambar di bawah.

 
Garis singgung lingkaran
 

Garis AB adalah garis singgung persekutuan luar dua lingkaran. Konsep untuk mengetahui panjang garis singgung persekutuan luar dua lingkaran adalah teorema pythagoras. Langkah pertama adalah proyeksikan titik P ke garis OA. Panjang garis PP’ sama dengan garis AB, sehingga dengan menghitung panjang PP’ maka kita juga akan mendapatkan panjang AB (garis singgung persekutuan dua lingkaran).

Perhatikan bahwa segitiga PP’O merupakan segitiga siku-siku yang siku-siku di P’. Dengan teorema phytagoras dapat diperoleh panjang PP’ yaitu sebagai berikut.

  \[ PP' = \sqrt{OP^{2}-\left( OP'\right)^{2}} \]

Karena OP' = OA - BP = R - r maka,

  \[ PP' = \sqrt{OP^{2} - \left( R - r\right)^{2}} \]

Sehingga, rumus garis singgung persekutuan luar dua llingkaran dapat dinyatakan dalam rumus di bawah.

Rumus mencari panjang garis singgung persekutuan luar dua lingkaran:

  \[ AB = PP' = \sqrt{OP^{2}-(R-r)^{2}} \]

Keterangan:
        AB = PP’ = Garis singgung persekutuan luar lingkaran
        OP = Jarak antara kedua pusat lingkaran
        R = Jari-jari lingkaran besar
        r = jari-jari lingkaran kecil

Tidak ada komentar:

Posting Komentar

POSTES KELILING DAN LUAS SEGIEMPAT

Selasa & Kamis, 4 & 6 Mei 2021 POSTES KELILING DAN LUAS SEGIEMPAT Guru                : Fara Dibah, S.Pd Mapel             : Matemat...